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NASA Simulation of current space debris

The illustrations on the right are current
mitigation technologies which are expensive

and cumbersome to implement.
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Atmosphere-Breathing Electric Propulsion

These are current
ABEP technologies
for mitigating orbital
debris. They are
high cost and high
complexity.
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This is an illustration
of my device concept
on a CubeSat (a cube
satellite), along with
the forces that it will
generate.




First-Order Analysis

E and B fields

Ohm’s law: E+vxB=—
"]

Lorentz Force: f=J]JxB

First order analysis consists of modelling the
electric and magnetic forces of the device to

determine power requirements and scaling laws.

dq = pdV
Maschen. “File:Lorentz Force Continuum.Svg.” Wikimedia Commons, 11 Sept.
2012, commons.wikimedia.org/wiki/File:Lorentz_force_continuum.svg.
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No performance difference based on the
size of the satellite!

~ Thiscan be scaled to any size satellite.
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Above are the simulations of the electric and magnetic fields generated by an
example propulsion device. This allows the Lorentz force to be computed, leading
to the thrust.



Plasma conductivity
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Conductivity vs latitude
All orbits intersect the equator.
*Conductivity is highest near the equator, and lower at the poles*.

By interpolating these results, a conductivity model of the ionosphere is
produced. Conductivity is also found to be altitude independent.

* - Pfaff, R. F., “The Near-Earth Plasma Environment,” Space Science Reviews, Vol. 168, 2012, pp. 23-112



Performance

Propulsion Gystem Isp Thiast Power density Orbat Altitude
Equatonal MHD 1000s—2500s S —20mHN 10+ mHEW 400 — 2000 km
Folar MHD 400s—1000¢ 1 pb —amM 6+ m W 200 —1000 km
Hall-electric ABEFP 1500z —2000s fmb] —Zd4mll 13 mHAW Q0 — 250 km
Gridded-ion ABEP 3000 dmM —20mH 2 =20 mHAW 200 —250 km
FPulsed plasma ABEF 10003 4 4mb — SmH T o+mMEW 200 km

MHD propulsion has similar specific impulses (efficiencies) to other ABEP
options, and a similar power density, but can operate at much higher altitudes.



Examples

Vehicle mass  myyp,a  PwmaDa TSPCy  Lpa  mMHDp  Ispp
Units kg kg W W/mN  km/s kg km/s
Landsat 9 1512 123.3 430 130.8  4.206  51.10 10.148
TROPICS 39 0.232 1.3 93.57 4360 0.04553 22.231
Zenit-2 ADR 9000 395.5 2550 198.9 10.657 395.5 10.657

Use cases

Use case scenarios were analyzed with favorable results showing that MHD
propulsion is relevant on large and small satellites, as well as active debris

removal.
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Further research
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Further research for particle in cell (PIC)
simulations include investigating
magnetospheric drag effects, electromagnet
usage, and use in high Earth orbit and other

Shuvalov et al., “Control of the drag on a spacecraft in the
earth’s ionosphere using the spacecraft’s magnetic field”,

plasma environments. “Galileo Project: Jupiter's Interior.” NASA, NASA, 1 Oct. 2001, Acta Astronautica, Vol. 151, 2018, pp. 717-725, 1
www2.jpl.nasa.gov/galileo/jupiter/interior.html. ’




Conclusion

Problem — Space debris

Solution — MHD

First-order simulations are used for preliminary analysis.
Conductivity varies with latitude, but not altitude.

MHD has good performance vs. chemical rockets & EP

PIC can be used to improve simulations, add additional effects, and
explore alternate use cases.

Thank you for your time and consideration.
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